What Is Symplectic Geometry? – Working Draft
نویسنده
چکیده
Symplectic geometry is an even dimensional geometry. It lives on even dimensional spaces, and measures the sizes of 2-dimensional objects rather than the 1-dimensional lengths and angles that are familiar from Euclidean and Riemannian geometry. It is naturally associated with the field of complex rather than real numbers. However, it is not as rigid as complex geometry: one of its most intriguing aspects is its curious mixture of rigidity (structure) and flabbiness (lack of structure). In this talk I will try to describe some of the new kinds of structure that emerge. First of all, what is a symplectic structure? The concept arose in the study of classical mechanical systems, such as a planet orbiting the sun, an oscillating pendulum or a falling apple. The trajectory of such a system is determined if one knows its position and velocity (speed and direction of motion) at any one time. Thus for an object of unit mass moving in a given straight line one needs two pieces of information, the position q and velocity (or more correctly momentum) p := q̇. This pair of real numbers (x1, x2) := (p, q) gives a point in the plane R2. In this case the symplectic structure ω is an area form (written dp ∧ dq) in the plane. Thus it measures the area of each open region S in the plane, where we think of this region as oriented, i.e. we choose a direction in which to traverse its boundary ∂S. This means that the area is signed, i.e. as in Figure 1.1 it can be positive or negative depending on the orientation. By Stokes’ theorem, this is equivalent to measuring the integral of the action p dq round the boundary ∂S.
منابع مشابه
Preliminary draft ON THE GEOMETRY OF SYMPLECTIC RESOLUTIONS
1. Poisson schemes 1 2. Hamiltonian reduction in the symplectic case 6 3. Deformations and quantizations of Poisson schemes 9 4. Symplectic singularities 13 5. Symplectic resolutions 18 6. Poisson deformations. 19 7. Purity 22 8. Tilting generators 25 9. Algebraic cycles and cohomological purity 28 10. Appendix 1: On rational singularities 31 11. Appendix 2: Reminder on GIT and stability 33 12....
متن کاملWhat Is Symplectic Geometry?
In this talk we explain the elements of symplectic geometry, and sketch the proof of one of its foundational results — Gromov’s nonsqueezing theorem — using J-holomorphic curves.
متن کاملA New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation
In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant lit...
متن کاملCourant Algebroids from Categorified Symplectic Geometry: Draft Version
In categorified symplectic geometry, one studies the categorified algebraic and geometric structures that naturally arise on manifolds equipped with a closed non-degenerate n + 1-form. The case relevant to classical string theory is when n = 2 and is called ‘2-plectic geometry’. Just as the Poisson bracket makes the smooth functions on a symplectic manifold into a Lie algebra, there is a Lie 2-...
متن کاملCategorified Symplectic Geometry and the String Lie 2-algebra
Multisymplectic geometry is a generalization of symplectic geometry suitable for n-dimensional field theories, in which the nondegenerate 2-form of symplectic geometry is replaced by a nondegenerate (n + 1)-form. The case n = 2 is relevant to string theory: we call this ‘2-plectic geometry.’ Just as the Poisson bracket makes the smooth functions on a symplectic manifold into a Lie algebra, the ...
متن کامل